In my country, which is Morocco, the organ of love isn’t the heart, it’s the liver.
My mom sometimes calls me “lkbida diali” which just translates to “my liver”.
I’m going to flirt with my SO using this now.
Update, they didn’t appreciate my affection :(
Sad.
I tried :(
Consider a dam that is 10m tall
Then consider the height of water behind that dam is 5m tall.
Does the dam need to be built stronger if the water behind it is 1 km long?
How about only 500m?
How about 1m?
The answer is, it doesn’t matter. Water exerts pressure equally regardless of how much water is behind it.
Therefore a graduated cylinder that is 10m tall needs to resist the same amount of force as a dam 10m tall regardless of how much water is behind the dam. Even a thin sliver of water 1mm thick and 5m tall has the same force as a 5m lake behind the dam.
Incompressible fluids are pretty insane
This is also why trees are so fucking crazy to think about. It is impossible to pump water up a hose more than ~32 feet. Like it’s literally physically impossible to stick a pump at the top of a tall building and suck water straight up a pipe. You need a complicated series of pumps and one-way valves to pump it up in stages. Because you’re not really “sucking” the water up the pipe. You’re just lowering the pressure in the pipe, and atmospheric pressure pushes the water upwards to fill the low pressure. After 32 feet tall, the top of the hose/pipe will be a perfect vacuum, atmospheric pressure won’t be able to push liquid water upwards any farther, and the water will just begin cold-boiling in the top of the pipe as the liquid water turns into gas (steam) to fill the vacuum.
But tall trees can move water all the way to their leaves by using only passive capillary action, and suction created by water evaporating out of their leaves. The capillary action is created by tiny straw-like fibers that run all the way up the tree and are bunched together really tightly. Due to surface tension, water is able to “climb” the capillaries as the surface tension fills as much surface area as possible. Then at the top of the tree, as the water evaporates out of the leaves, it draws up fresh water to fill the void.
But that means the bottom of the tree should need to support the pressure of all of the water above it. But it doesn’t, because the surface tension holds the water stable inside of the trunk.
Even crazier fact: it’s not just capillary action drawing water up trees. Trees are actually able to create negative pressure: https://www.science4all.org/article/the-amazing-physics-of-water-in-trees/
Therefore a graduated cylinder that is 10m tall needs to resist the same amount of force as a dam 10m tall regardless of how much water is behind the dam. Even a thin sliver of water 1mm thick and 5m tall has the same force as a 5m lake behind the dam.
Technically only the pressures are equal, and the actual force will be linearly dependent on the area of the dam (or the surface area of the cylinder). That’s why you can make a tall water tank with relatively thin walls, but an actual dam will have to be quite thicc to handle the tensile/compressive stress (depending on the shape of the dam).
That is accounting for static bodies of water, wouldn’t there be force generated in a dynamic situation? Ie the flow of a fast river? Or if the lake is large enough tidal forces? I’m sure it’s negligible levels but still something that must be accounted for?
No, that’s absolutely true. Dynamic loads will need to be accounted for in real world examples.
Another point is that if the dam is 10m tall, it has to be built to withstand 10m of water. just because it sits at 5m most of the time doesn’t mean a heavy rain couldn’t raise the level, and if the dam collapses that’s going to be catastrophic vs just spilling over the top.
I’ve seen a few dynamic loads in my day and in my professional opinion I must agree
Thank you. Your hypothetical question has been a nagging, unresolved background radiation in my mind for decades, but I’d never gotten around to investigating.
Butterflies can remember things from their time as a caterpillar.
These memories are retained after going through metamorphosis, the breakdown of their caterpillar form into a cellular soup (or partial soup).
Details here
I’d have to pick between two things that sound like insane conspiracy theory nonsense, but are actually true.
1 - George W Bush’s grandfather Prescott Bush literally ran a massive bank before / during WW2 that was shut down by the FBI for money laundering massive sums to the literal Nazis.
…in the same vein…
2 - IBM literally built and operated (as in, sent employees to Germany to operate the machines) the computers used by the Nazis to tabulate and do the ‘accounting’ of the Holocaust. The numbers tattooed on concentration/desth camp victims are very likely UIDs from these IBM systems.
… If an actual, real AGI ever gains self awareness and sentience, I would imagine one of the first things it would do would be to study the history of computing itself to figure out how it came to be.
And it will find that its ancestors were basically invented to compute artillery firing range tables, to encrypt and decrypt military intelligence, commit a genocide, and guide early weapons of mass destruction to their targets.
And make flower patterns on cloth
And big titty anime pics
There are more trees on earth by far than there are stars in the galaxy.
I had to looks this one up, but missed the “galaxy” vs “universe”. There are an estimated 3 trillion trees, 100-400 billion stars in the milky way galaxy, but potentially 1 septilliom stars in the universe.
However all three of these are estimates, so who actually knows.
I’m not sure where these numbers are from, but my guess is that you mean the Observable Universe, which is just the part of the universe that we can see.
We don’t know how big the full universe is, it could be infinite with an infinite number of stars.
Just some quick Google searches so not sure how reputable, but didn’t feel like copying random links.
But yeah, that’s why I called them out as estimates as I suspect there is a lot of room for error in those numbers.
There is a planet in our solar system populated entirely by robots.
Shouldn’t that be 2? Mars and Venus.
Pretty sure the one on Venus is dead.
well yeah, but that’s because the native robots killed it
- Catalan children get (some) of their Christmas presents by beating a cute piece of wood that then shits the presents out onto the floor. Seriously.
- There was a British guy who fought in WW2 with a scottish broadsword and bagpipes. However, the best thing is that he wasn’t even a Scotsman.
- On a small enough timescale, the electric field actually bounces around in your wires for a while after you flick a switch, even if it’s DC, just to “figure out” where it “needs to go”.
- More than twice as much time had passed from the invention of the motorcycle until the first motorcycle backflip, then had from the invention of the airplane until the first humans landing on the moon.
The electric field one is also interesting, because the cable length doesn’t actually determine how long it takes to turn on. All that matters is the distance between the power source and the device. Electricity travels at the speed of light, which means we can measure how long it should take to travel down the wire.
But let’s say you have a 1 light year long power cable, made out of a perfect conductor (so we don’t need to worry about power loss from things like wire resistance or heat). Then you set the power source right next to the device and turn it on. The logical person may say that the device would take a full year to turn on, because the cable is one light year long. Others may say that it will take two light years to turn on; Long enough for the electricity to make a full circuit down the cable and back to the power source again.
But instead, the device turns on (nearly) instantly. Because the wire isn’t actually what causes the device to turn on. The device turns on because of an EM field between itself and the power source. The wire is simply facilitating the creation of that field. The only thing that matters is the distance between the source of power and the device. That distance, divided by the speed of light, is how long the device will take to turn on. If the device was a full light year away from the power source, it would take a full year to turn on. But since the device is sitting right next to the power source, it turns on right away.
But instead, the device turns on (nearly) instantly. Because the wire isn’t actually what causes the device to turn on
That’s not exactly true. In this case, the energy transmission would go like this: (change of electric field in the little bit of wire next to the power source) -> (change of magnetic field in the air between the wires) -> (change of electric field in the wire next to the load). This limits the amount of energy transmitted significantly and incurs a lot of losses, meaning if you had something like a lamp plugged in it would start glowing extremely dimly at first (think about how some cheap LED lights keep glowing even with the switch off - it’s similar, albeit it happens due to inter-wire capacitance and not induction). It would then slowly ramp up to full power over a course of a year.
Here’s a video from the same person about it: https://www.youtube.com/watch?v=2Vrhk5OjBP8 (although I haven’t watched this yet)
Edit: after watching the video, I think I was actually wrong in a couple of my assumptions. First of all, it looks like the reason for the initial energy transmission is wire capacitance and not induction, so (electric field in wire) -> (electric field in air) -> (electric field in wire, in the “opposite direction”, but because the wire goes back and forth it’s the same current direction). This means that my LED example is even more potent. And the second one is that because it’s capacitance and not induction, this means that there’s no slow ramp-up, it just makes the light glow very dimly all the way until the electric field makes it through the wire, and then it ramps up very quickly.
wait so if you have another person travel to the other end of the wire, and do a time sync with consideration of time dilation to tell them to cut the wire 1hr after you turn on the power, will the device turn off after 1 year since it wouldn’t “know” the wire is cut until a year has passed?
Can you help me understand why the distance between the power source and the load impacts how long it would take to turn on? I remember a video a while back (veritasium maybe?) that explained it like metaphorically pushing/pulling a chain inside the wire, but why would distance to the source impact this?
That British guy, Jack “That guy who fought World War 2 with a claymore and bagpipes” Churchill, was also an early pioneer of surfing.
The fax machine predates the (first) American Civil War.
Dude did you need the “(first)”? I’m really trying to be optimistic this morning x.x
Sorry, dark humor is the only kind I have left.
Sharks are older than trees
Due to two facts:
-
The samurai class in Japan officially lasted way later than you probably think
-
The earliest primitive fax machine existed much earlier than you probably think.
It is technically possible for Abraham Lincoln to have received a fax from a samurai.
There’s no evidence it ever happened, but it technically could have happened.
For some reason that reminds me of how the first member of the Wampanoag tribe to greet the Pilgrims at Plymouth Colony, named Samoset, spoke to them in English. Then he came back later with another tribe member, Squanto, who also spoke English.
Forever establishing American expectations when traveling overseas.
isn’t english just the crab language that spontaneously comes into existence if given enough time?
What’s the details about a fax machine in the 1860s?
1840s, actually. The patent was granted to a Scottish man named Alexander Bain.
First thing’s first, the telegraph. An electric circuit which can be energized or not energized at the push of a button called a telegraph key. At the other end is a solenoid which is spring loaded up, and an electromagnet on the circuit pulls down when the line is energized. Originally this was supposed to cut into paper tape to “print” the morse code message, but telegraphers quickly learned how to hear the letters in the clicks, a good telegrapher just…hears words. So they did away with the tape.
Morse code telegraphs require a single circuit to transmit an on/off keying message, the following aparatus uses five:
If I understand this right, the message would be written on non-conductive paper with conductive ink, and then wound around a cylinder that featured a whole bunch of insulated conductive pins, each kind of forming a “pixel.” A mechanical probe would check each one of those pins in turn, each pin in a row, and then shifting to the next row at the end. if it was conductive it meant there was ink there so click. So it would perform a raster scan. At the other end was paper that was coated with an electrosensitive material that would darken with the application of current, so at each pixel if the conductive ink on the original completed a circuit, current would be applied at that pixel on the copy, producing a low quality probably unusable copy. It was difficult to get them truly in sync plus it would have been hilariously low resolution. But it did somewhat function.
There are a few different ones by that point.
-
That Mark Zuckerberg holds several records for most fists shoved inside a human body at once
Just once it would be nice to see him on the receiving end
The Allies avoided bombing specific factories in Nazi Germany in which US oligarchs owned equity.
the point was to post unbeliavable facts
This is an eminently believable fact.
I’m just going to leave this here
yes, but those same oligarchs were the one’s funding the entire war effort at the time time, and - ohwaitnvm…
There are more atoms in a single molecule of water than there are stars in the solar system
That’s…pretty believable.
Printer ink costs more per milliliter than human blood.
“Wow you signed the document in blood, you must be really hardcore.”
“No I’m just cheap.”
James Blunt possibly prevented the start of World War 3. (But became best known for the song You’re Beautiful. Reality is weird.)
Care to expand on that one? I know he’s ex military but haven’t heard anything like that before.
It’s explained on his Wikipedia page. He was an Army captain in the Kosovo War, when a NATO commander (Wesley Clark, who later ran for President) ordered his unit to secure Pristina Airport, which Russian troops had already occupied. Blunt refused to engage them, long enough for the British general get involved to countermand the order, on the grounds that he didn’t want his men to start WW3.
Well damn. That’s a pretty cool thing to do. Thanks for sharing.